Cartilage hair hypoplasia (CHH) is a rare metaphyseal chondrodysplasia characterized by short stature and short limbs, found primarily in Amish and Finnish populations. Cartilage hair hypoplasia is caused by mutations in the RMRP gene located on chromosome 9p13.3. The disorder has several characteristic orthopaedic manifestations, including joint laxity, limited elbow extension, ankle varus, and genu varum. Immunodeficiency is of concern in most cases. Although patients exhibit orthopaedic problems, the orthopaedic literature on CHH patients is scant at best. The objective of this study was to characterize the orthopaedic manifestations of CHH based on the authors’ unique access to the largest collection of CHH patients ever reported.
-
Topic
- Cardiac System
- Clinical Case Report
- Diagnostic Development
- Disease Discovery
- Endocrine System
- Endophenotype
- Genomic Testing
- Hearing
- Hepatic System
- Immune System
- Laboratory
- Metabolic
- Mitochondrial
- Natural History
- Neurologic System
- Ocular System
- Opinion
- Pathophysiology
- Population Genetics
- Psychiatry
- Public Health
- Pulmonology
- Renal System
- Review
- Skeletal System
- Therapy
- Year
Published Papers
The primary goal of our research will always be to find effective and affordable treatments for patients. One of the central focus areas of our mission is sharing our methods and discoveries with the broader scientific community.
Our staff have published more than 145 peer-reviewed research papers, fueled by close collaboration between our clinical and laboratory teams and effective relationships with academic, scientific, and clinical partners.
Authors: Strauss KA, Jinks RN, Puffenberger EG, Venkatesh S, Singh K, Cheng I, Mikita N, Thilagavathi J, Lee J, Sarafianos S, Benkert A, Koehler A, Zhu A, Trovillion V, McGlincy M, Morlet T, Deardorff M, Innes AM, Prasad C, Chudley AE, Lee INW, Suzuki CK
CODAS syndrome is a multi-system developmental disorder characterized by cerebral, ocular, dental, auricular, and skeletal anomalies. Using whole-exome and Sanger sequencing, we identified four LONP1 mutations inherited as homozygous or compound-heterozygous combinations among ten individuals with CODAS syndrome. The individuals come from three different ancestral backgrounds (AmishSwiss from United States, n ¼ 8; Mennonite-German from Canada, n ¼ 1; mixed European from Canada, n ¼ 1). LONP1 encodes Lon protease, a homohexameric enzyme that mediates protein quality control, respiratory-complex assembly, gene expression, and stress responses in mitochondria. All four pathogenic amino acid substitutions cluster within the AAAþ domain at residues near the ATP-binding pocket. In biochemical assays, pathogenic Lon proteins show substrate-specific defects in ATP-dependent proteolysis. When expressed recombinantly in cells, all altered Lon proteins localize to mitochondria. The Old Order Amish Lon variant (LONP1 c.2161C>G[p.Arg721Gly]) homo-oligomerizes poorly in vitro. Lymphoblastoid cell lines generated from affected children have (1) swollen mitochondria with electron-dense inclusions and abnormal inner-membrane morphology; (2) aggregated MT-CO2, the mtDNA-encoded subunit II of cytochrome c oxidase; and (3) reduced spare respiratory capacity, leading to impaired mitochondrial proteostasis and function. CODAS syndrome is a distinct, autosomal-recessive, developmental disorder associated with dysfunction of the mitochondrial Lon protease.
Authors: Strauss KA, Markx S, Georgi B, Paul SM, Jinks RN, Hoshi T, McDonald A, First MB, Liu W, Benkert AR, Heaps AD, Tian Y, Chakravarti A, Bucan M, Puffenberger EG
We conducted blinded psychiatric assessments of 26 Amish subjects (52+11 years) from four families with prevalent bipolar spectrum disorder, identified 10 potentially pathogenic alleles by exome sequencing, tested association of these alleles with clinical diagnoses in the larger Amish Study of Major Affective Disorder (ASMAD) cohort, and studied mutant potassium channels in neurons. Fourteen of 26 Amish had bipolar spectrum disorder. The only candidate allele shared among them was rs78247304, a non-synonymous variant of KCNH7 (c.1181G>A, p.Arg394His). KCNH7 c.1181G>A and nine other potentially pathogenic variants were subsequently tested within the ASMAD cohort, which consisted of 340 subjects grouped into controls subjects and affected subjects from overlapping clinical categories (bipolar 1 disorder, bipolar spectrum disorder and any major affective disorder). KCNH7 c.1181G>A had the highest enrichment among individuals with bipolar spectrum disorder (x2 5 7.3) and the strongest family-based association with bipolar 1 (P 5 0.021), bipolar spectrum (P 5 0.031) and any major affective disorder (P 5 0.016). In vitro, the p.Arg394His substitution allowed normal expression, trafficking, assembly and localization of HERG3/Kv11.3 channels, but altered the steady-state voltage dependence and kinetics of activation in neuronal cells. Although our genome-wide statistical results do not alone prove association, cumulative evidence from multiple independent sources (parallel genome-wide study cohorts, pharmacological studies of HERG-type potassium channels, electrophysiological data) implicates neuronal HERG3/Kv11.3 potassium channels in the pathophysiology of bipolar spectrum disorder. Such a finding, if corroborated by future studies, has implications for mental health services among the Amish, as well as development of drugs that specifically target HERG3/Kv11.3.
Authors: Ng J, Zhen J, Meyer E, Erreger K, Li Y, Kakar N, Ahmad J, Thiele H, Kubisch C, Rider NL, Morton DH, Strauss KA, Puffenberger EG, D’Agnano D, Anikster Y, Carducci C, Hyland K, Rotstein M, Leuzzi V, Borck G, Reith ME, Kurian MA
Dopamine transporter deficiency syndrome due to SLC6A3 mutations is the first inherited dopamine ‘transportopathy’ to be described, with a classical presentation of early infantile-onset progressive parkinsonism dystonia. In this study we have identified a new cohort of patients with dopamine transporter deficiency syndrome, including, most significantly, atypical presentation later in childhood with a milder disease course. We report the detailed clinical features, molecular genetic findings and in vitro functional investigations undertaken for adult and paediatric cases. Patients presenting with parkinsonism dystonia or a neurotransmitter profile characteristic of dopamine transporter deficiency syndrome were recruited for study. SLC6A3 mutational analysis was undertaken in all patients. The functional consequences of missense variants on the dopamine transporter were evaluated by determining the effect of mutant dopamine transporter on dopamine uptake, protein expression and amphetamine-mediated dopamine efflux using an in vitro cellular heterologous expression system. We identified eight new patients from five unrelated families with dopamine transporter deficiency syndrome. The median age at diagnosis was 13 years (range 1.5–34 years). Most significantly, the case series included three adolescent males with atypical dopamine transporter deficiency syndrome of juvenile onset (outside infancy) and progressive parkinsonism dystonia. The other five patients in the cohort presented with classical infantile-onset parkinsonism dystonia, with one surviving into adulthood (currently aged 34 years) and labelled as having ‘juvenile parkinsonism’. All eight patients harboured homozygous or compound heterozygous mutations in SLC6A3, of which the majority are previously unreported variants. In vitro studies of mutant dopamine transporter demonstrated multifaceted loss of dopamine transporter function. Impaired dopamine uptake was universally present, and more severely impacted in dopamine transporter mutants causing infantile-onset rather than juvenile-onset disease. Dopamine transporter mutants also showed diminished dopamine binding affinity, reduced cell surface transporter, loss of post-translational dopamine transporter glycosylation and failure of amphetamine-mediated dopamine efflux. Our data series expands the clinical phenotypic continuum of dopamine transporter deficiency syndrome and indicates that there is a phenotypic spectrum from infancy (early onset, rapidly progressive disease) to childhood/adolescence and adulthood (later onset, slower disease progression). Genotype–phenotype analysis in this cohort suggests that higher residual dopamine transporter activity is likely to contribute to postponing disease presentation in these later-onset adult cases. Dopamine transporter deficiency syndrome remains under-recognized and our data highlights that dopamine transporter deficiency syndrome should be considered as a differential diagnosis for both infantile- and juvenile-onset movement disorders, including cerebral palsy and juvenile parkinsonism.
Authors: Morlet T, Rabinowitz MR, Looney LR, Riegner T, Greenwood LA, Sherman EA, Achilly N, Zhu A, Yoo E, O’Reilly RC, Jinks RN, Puffenberger EG, Heaps A, Morton H, Strauss KA
SLITRK family proteins control neurite outgrowth and regulate synaptic development. In mice, Slitrk6 plays a role in the survival and innervation of sensory neurons in the inner ear, vestibular apparatus, and retina, and also influences axial eye length. We provide the first detailed description of the auditory phenotype in humans with recessive SLITRK6 deficiency.
Authors: Ferkol TW, Puffenberger EG, Lei H, Helms C, Strauss KA, Bowcock A, Carson JL, Hazucha M, Morton DH, Patel AC, Leigh MW, Knowles MR, Zariwala MA
To determine whether individuals with primary ciliary dyskinesia (PCD) from unrelated Amish and Mennonite families harbor a single and unique founder mutation.
Authors: Parker WE, Orlova KA, Parker, WH, Birnbaum JF, Krymskaya VP, Goncharov DA, Baybis M, Helfferich J, Okochi K, Strauss KA, Crino PB
A rare neurodevelopmental disorder in the Old Order Mennonite population called PMSE (polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome; also called Pretzel syndrome) is characterized by infantile-onset epilepsy, neurocognitive delay, craniofacial dysmorphism, and histopathological evidence of heterotopic neurons in subcortical white matter and subependymal regions. PMSE is caused by a homozygous deletion of exons 9 to 13 of the LYK5/STRADA gene, which encodes the pseudokinase STRADA, an upstream inhibitor of mammalian target of rapamycin complex 1 (mTORC1). We show that disrupted pathfinding in migrating mouse neural progenitor cells in vitro caused by STRADA depletion is prevented by mTORC1 inhibition with rapamycin or inhibition of its downstream effector p70 S6 kinase (p70S6K) with the drug PF-4708671 (p70S6Ki). We demonstrate that rapamycin can rescue aberrant cortical lamination and heterotopia associated with STRADA depletion in the mouse cerebral cortex. Constitutive mTORC1 signaling and a migration defect observed in fibroblasts from patients with PMSE were also prevented by mTORC1 inhibition. On the basis of these preclinical findings, we treated five PMSE patients with sirolimus (rapamycin) without complication and observed a reduction in seizure frequency and an improvement in receptive language. Our findings demonstrate a mechanistic link between STRADA loss and mTORC1 hyperactivity in PMSE, and suggest that mTORC1 inhibition may be a potential treatment for PMSE as well as other mTOR-associated neurodevelopmental disorders.
Authors: Muelly ER, Moore GJ, Bunce SC, Mack J, Bigler DC, Morton DH, Strauss KA
Maple syrup urine disease (MSUD) is an inherited disorder of branched chain amino acid metabolism presenting with neonatal encephalopathy, episodic metabolic decompensation, and chronic amino acid imbalances. Dietary management enables survival and reduces risk of acute crises. Liver transplantation has emerged as an effective way to eliminate acute decompensation risk. Psychiatric illness is a reported MSUD complication, but has not been well characterized and remains poorly understood. We report the prevalence and characteristics of neuropsychiatric problems among 37 classical MSUD patients (ages 5–35 years, 26 on dietary therapy, 11 after liver transplantation) and explore their underlying mechanisms. Compared with 26 age-matched controls, MSUD patients were at higher risk for disorders of cognition, attention, and mood. Using quantitative proton magnetic resonance spectroscopy, we found lower brain glutamate, N-acetylaspartate (NAA), and creatine concentrations in MSUD patients, which correlated with specific neuropsychiatric outcomes. Asymptomatic neonatal course and stringent longitudinal biochemical control proved fundamental to optimizing long-term mental health. Neuropsychiatric morbidity and neurochemistry were similar among transplanted and nontransplanted MSUD patients. In conclusion, amino acid dysregulation results in aberrant neural networks with neurochemical deficiencies that persist after transplant and correlate with neuropsychiatric morbidities. These findings may provide insight into general mechanisms of psychiatric illness.
Support our mission of providing compassionate, affordable, and efficient care to families facing rare genetic disorders!
Our clinic serves as a trusted medical practice for children and adults facing rare genetic disorders. Our dedicated team works every day to prevent and treat genetic illnesses. Our facility is in the heart of the Amish and Mennonite communities in Lancaster County. Inside is filled with cutting-edge gene sequencing tools that allow us to deliver highly personalized care—a precise treatment option for the right patient at the right time.
