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Objective To evaluate clinical outcome of patients with Ellis-van Creveld syndrome (EVC) in whom congenital
heart disease (CHD) repair was delayed intentionally to reduce the risk of postoperative respiratory morbidity and
mortality.
Study design This retrospective review of 51 EVC c.1886+5G>T homozygotes born between 2005 and 2014
focused on 18 subjects who underwent surgery for CHD, subdivided into early (mean, 1.3 months) vs delayed (mean,
50.1 months) repair.
Results Growth trajectories differed between control subjects and patients with EVC, and CHD was associated
with slower weight gain. Relative to controls, infants with EVC had a 40%-75% higher respiratory rates (indepen-
dent of CHD) accompanied by signs of compensated respiratory acidosis. Blood gases and respiratory rates ap-
proached normal values by age 4 years. Hemodynamically significant CHD was present in 23 children, 18 (78%)
of whom underwent surgical repair. Surgery was performed at 1.3 ± 1.3 months for children born between 2005
and 2009 (n = 9) and 50.1 ± 40.2 months (P = .009) for children born between 2010 and 2014 (n = 9). The latter
had shorter postoperative mechanical ventilation (1.1 ± 2.4 days vs 49.6 ± 57.1 days; P = .075), shorter intensive
care duration of stay (16 ± 24 days vs 48.6 ± 44.2 days; P = .155), and no postoperative tracheostomies (vs 60%;
P = .028) or deaths (vs 44%; P = .082).
Conclusion Among children with EVC and possibly other short-rib thoracic dysplasias, delayed surgical repair
of CHD reduces postoperative morbidity and improves survival. Respiratory rate serves as a simple indicator for
optimal timing of surgical repair. (J Pediatr 2017;191:145-51).

I n 1940, Richard W. B. Ellis and Simon van Creveld described the constellation of short-limbed chondrodysplasia, polydac-
tyly, ectodermal dysplasia, and congenital “morbus cordis” (heart disease), and coined the term chondroectodermal dyspla-
sia for what is now commonly called Ellis-van Creveld syndrome (EVC; MIM# 225500).1 McKusick et al2 studied EVC among

Old Order Amish populations during the 1960s, tracing the condition through 30 sibships and 10 generations to 1 of 4 Swiss
Anabaptist founders who immigrated to the New World between 1744 and 1800. Amish pedigrees proved critical in mapping
EVC to chromosome 4p16 and in 2000 the phenotype was finally linked to a homozygous splice-donor change in EVC
(c.IVS13+5G>T).3,4,5

In 2015, a human phenocopy linked to WDR356 implicated aberrant sonic hedgehog (SHH) signaling in primary cilia as
central to the pathogenesis of EVC.7-13 This and other studies established EVC within the larger phenotypic series of short rib
thoracic dysplasias (PS208500; SRTDs) caused by an array of genes (eg, EVC, EVC2, WDR35, IFT172, DYNC2LI1, TTC21B, IFT80,
TCTEX1D2, WDR19, NEK1, CEP120, WDR60, WDR34, DYNC2H1, KIAA0586, SRTD1, IFT140, IFT52) that converge on the
action of primary cilia and their intraflagellar transport system.14,15 A number of these syndromes are also properly catego-
rized as ciliary chondrodysplasias. For our purposes, we focus on the concept of the phenotypic series (ie, PS208500), because
it emphasizes shared anatomic features of the shortened tubular bones, short ribs, and thoracic constriction (SRTDs) that pre-
dispose to cardiopulmonary morbidity.16,17

Sixty percent of neonates with EVC have congenital heart disease (CHD), es-
pecially atrioventricular septal defects, and all are born with short ribs and a long,
narrow rib cage that decreases chest wall size and compliance.2,18,19 The interplay
between cardiac and respiratory pathology is the most vexing aspect of EVC and,
despite advances in medical and surgical care, many affected infants still die of

CHD Congenital heart disease
EVC Ellis-van Creveld syndrome
Qp:Qs Pulmonary to systemic blood flow ratio
SHH Sonic hedgehog
SRTD Shortened tubular bones, short ribs, and thoracic constriction
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respiratory failure.19 In the report by McKusick et al,2 30 of 52
(58%) patients with EVC died from cardiopulmonary com-
plications before age 6 months of age, two-thirds within the
first 2 weeks of life. Little changed by 2010, when outcomes
of 11 EVC c.IVS13+5G>T homozygotes born between 2004 and
2009 with hemodynamically significant CHD, 9 of whom un-
derwent surgical repair within 5 months of life were reported.19

Four (44%) died from respiratory failure by postoperative
month 5 and 60% of survivors required tracheostomy.

There are similarities between EVC and other asphyxiating
thoracic dystrophies within the SRTD family.16,17,20 Although
respiratory morbidity of SRTD is commonly attributed to me-
chanical aspects of the chest wall, murine data indicate that
Evc protein, through downstream actions on Shh targets (eg,
Gli2, Gli3, Foxf1), might also influence lung embryogenesis.21-23

Whether such findings pertain to humans is unknown, but life-
threatening respiratory complications associated with EVC and
other SRTDs often dissipate with age, and evidence suggests
that adults with EVC have normal pulmonary function.24-26 To
accommodate this distinctive pattern of early ribcage and lung
development, we intentionally delayed thoracotomy for Amish
patients with EVC born between 2010 and the present.

Methods

The Institutional Review Board of Lancaster General Hospi-
tal approved the study and parents consented in writing on
behalf of their children. Over the last decade (2005-2014), 51
children homozygous for EVC c.IVS13+5G>T who had the
characteristic phenotype were treated. We conducted a retro-
spective chart review of growth, pulmonary maturation, and
clinical outcome. The same Clinic for Special Children nurse
measured and recorded growth and respiratory indices during
each outpatient encounter. Respiratory rates were recorded for
a full minute in relaxed or sleeping subjects; children on chronic
supplemental oxygen remained so during respiratory
measurements.

Thirty children (59%) were born with CHD and 18 (35%)
underwent surgical repair. The latter were divided into 2 tem-
poral cohorts (Figure 1): 1 born between 2005 and 2009 (n = 9)
and the second born between 2010 and 2014 (n = 9; mean age,
5.4 ± 3.1 years; range 0.9-12.5; 47% female). We used the
Student t test and Fisher exact test (Prism 6, GraphPad, La Jolla,
CA) to compare them.

Figure 1. Fifty-one EVC c.IVS13+5G>T homozygotes were diagnosed at a single center (Clinic for Special Children) and divided
into 2 cohorts based on the strategy for managing hemodynamically significant CHD. Affected children born between 2005 and
2009 were managed using conventional guidelines for the timing of surgical repair, which occurred at an average of 1.3 ± 1.3
months and was associated with high postoperative respiratory morbidity (78%) and mortality (44%). For affected patients born
between 2010 and 2014, surgery was delayed an average of 50.1 ± 40.2 months, and there were no postoperative deaths or
tracheostomies.
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A lung biopsy was performed on 1 female EVC
c.IVS13+5G>T homozygote (born 2016) who is not in-
cluded within the present cohort. This is the only patient in
our series who had a lung biopsy. Sections of formalin-fixed
paraffin-embedded tissue stained by automation (hematoxylin-
eosin, elastin, trichrome, periodic acid-Schiff) were exam-
ined by standard light microscopy. Immunohistochemistry for
vimentin was performed using appropriate tissue controls.

Results

EVC c.IVS13+5G>T homozygotes had different growth tra-
jectories than control subjects and somatic growth was more
markedly delayed in EVC children (Figure 2). All 51 patients
with EVC had short ribs, narrow thorax, chronic tachypnea,
and a palpable liver. Reduced tidal volume in neonates mani-
fested as 40%-75% higher respiratory rates, which decreased
to control values between 36 and 48 months of age (Figure 3,
A). Breathing mechanics did not differ between children with
and without CHD (Figure 3, B) and, for individual patients,
neither prenatal sonographic measurements nor postnatal
chest radiographs were predictive of postnatal pulmonary
function.

We analyzed a total of 243 blood gas samples (both venous
and arterial) from 15 patients with EVC born with CHD
between 2010 and 2014 (Figure 1). Blood carbon dioxide
(pCO2) and bicarbonate (HCO3) showed compensated respi-
ratory acidosis, which resolved by about 4 years of age in par-
allel to normalization of respiratory rate (Figure 3, C and D).
Blood pCO2 and HCO3 were closely correlated (Pearson
r = 0.69; P < .0001), as expected from the Henderson-
Hasselbalch equilibrium (data not shown).

Among 15 EVC patients born with CHD between 2010 and
2014, 9 (60%) were chronically hypoxemic (arterial oxygen satu-
ration of <90% breathing room air) and 2 (13%) suffered from
paroxysms of arterial oxygen desaturation (≤70%) that could
last several minutes; one of these children died during a cya-
notic attack in early infancy and the other had cyanotic epi-
sodes that diminished over time and finally abated by year 2
of life.

Post mortem lung biopsies were obtained on a single female
EVC c.IVS13+5G>T homozygote (born in 2016) who died of
circulatory failure at day 7 of life. She was born to a 33-year-
old G9P9 mother with no prenatal complications who deliv-
ered by primary caesarean at 376/7 weeks gestation for concerns
of placental abruption. Birth weight (2.76 kg) was appropri-
ate for gestational age, Apgar scores were 5 (1 minute) and

Figure 2. Growth trajectories for EVC C, IVS13+5G>T homozygotes with (red circles) and without (black squares) hemody-
namically significant CHD. A, B, Individual measurements; data were smoothed to construct C and D. Gray shaded areas rep-
resent 3rd to 97th growth percentiles for healthy control children.
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Figure 3. A, EVC IVS13+5G>T homozygotes (n = 40, black circles) have elevated respiratory rates relative to control children
(gray squares, error bar = 1 SD) which normalize by approximately 48 months of age. Red dotted line and arrows show the
average and individual timing of cardiothoracic surgery, respectively, and number of postoperative hospital (upper) and venti-
lator (lower) days are indicated for each patient. B, Respiratory rates were similar in EVC patients with (red circles) and without
(black squares) CHD. C, D, There were 243 blood gas samples obtained from 15 subjects in the 2010-2014 cohort that showed
compensated respiratory acidosis (elevated arterial and venous pCO2 and bicarbonate, stable pH) during the first years of life
in patients who were spontaneously breathing or mechanically assisted (ventilator or continuous positive airway pressure); acid-
based status normalized by age 4 years, in parallel with respiratory rate. Blood pCO2 and HCO3 were closely correlated (Pearson
r = 0.69; P < .0001) as expected from the Henderson-Hasselbalch equilibrium (data not shown). E, Histologic image of a post
mortem lung biopsy viewed at low power shows lung parenchyma between the late saccular and early alveolar development,
appropriate for patient age, and a normally developed bronchovascular bundle (black arrow). There is no evidence of alveolar
capillary dysplasia, venous misalignment, or interstitial abnormalities. Pleural surface (arrowhead) appears unremarkable (stain:
hematoxylin- and eosin; original magnification ×40). F, Histologic image at higher power (lower image) shows profiles of
intraparenchymal arterioles with medial hypertrophy (black arrows), consistent with pulmonary hypertension (stain: hematoxylin-
and eosin; original magnification ×100).
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8 (5 minutes), and prenatal ultrasonographic and postnatal signs
of maturation were consistent with accurate timing of
conception.

The child was born with physical stigmata characteristic of
EVC. An echocardiogram on the first day of life showed an un-
balanced atrioventricular canal with right ventricular pre-
dominance and a hypoplastic left ventricular outflow tract. She
was started on prostaglandin and initially had balanced cir-
culation, but on day 6 of life developed signs of pulmonary
overcirculation that prompted emergent bilateral pulmonary
artery banding. Loading of her single ventricle precipitated
marked atrioventricular valve regurgitation and, on day of life
7, she died of circulatory shock. Soon after death, the sternum
was opened at the bedside and 2 pieces of lung tissue were
removed.

Wedge biopsies of lung parenchyma were obtained from the
right lower (2.5 × 1.4 × 0.8 cm) and middle (2.4 × 1.6 × 0.9 cm)
lobes. Histologic examination of lung parenchyma showed
maturation between the late saccular and early alveolar stage
of lung development (Figure 3, E), concordant with the child’s
chronological age. The number of airspace generations (ie,
radial-alveolar count) was appropriate for age and there was
a normal alveolar capillary network with no evidence of dys-
plasia or venous misalignment. The pulmonary interstitium
showed no evidence of increased glycogen-containing mes-
enchymal cells (periodic acid-Schiff and vimentin stains, not
shown) to suggest pulmonary interstitial glycogenosis. Small

muscular arteries and arterioles had intimal proliferation and
medial hypertrophy consistent with grade II pulmonary hy-
pertension (Figure 3, F), confirmed on trichrome and elastin
stains (not shown).

Six patients with EVC from the 2010-2014 cohort under-
went cardiac catheterization (Table I). Pulmonary
overcirculation was observed in 4 children with common
atrium, who had pulmonary to systemic blood flow ratios
(Qp:Qs) ranging from 1.4 to 2.3, as compared with the normal
circulation in which pulmonary and systemic blood flow are
separate and equal (ie, Qp:Qs = 1). Children with unbal-
anced atrioventricular canal or double outlet right ventricle
(pulmonary artery band, stent in the ductus arteriosus) had
low pulmonary blood flow (Qp:Qs of 0.5 and 0.6, respec-
tively). Average pulmonary vascular resistance among all 6 sub-
jects was 2.4 ± 1.5 Wood units (reference value, ≤3); 2 children
with common atrium (ages 6 and 12 months) had mild pul-
monary vascular hypertension (Table I).

Among 15 subjects from the 2010-2014 cohort who had
CHD, 3 were lost to follow-up, 2 died of preoperative respi-
ratory complications, and 1 did not require surgery (Figure 1).
For the 9 remaining subjects, the main indications for cor-
rective surgery were common atrium (n = 4) and atrioven-
tricular canal defect (n = 3). The average age of CHD repair
was 50.1 ± 40.2 months (range, 0.1 to 144.0) (Figure 3). Post-
operative ventilator and hospital days were 1.1 ± 2.4 and 16 ± 24
days, respectively. These values were skewed by the youngest

Table I. Cardiac catheterization data

Patients Age (mo) Diagnosis Qp:Qs* PVR† Surgery Outcome

3 36 Common atrium 2.3 1.5 Yes Alive
2 6 Common atrium 1.6 4.8 No Deceased
4 108 Common atrium 1.6 1.0 Yes Alive
1 12 Common atrium 1.4 3.9 No Alive
5 0 DORV, MV hypoplasia, coarctation 0.6 2.3 Yes Alive
6 48 Unbalanced AV canal, pre-Fontan 0.5 1.3 Yes Alive
Mean 35 1.3 2.4
SD 40 0.7 1.5

AV, atrioventricular; DORV, double outlet right ventricle; MV, mitral valve; PVR, pulmonary vascular resistance (expressed in Wood Units).
*Normal reference value: 1.0.
†Normal reference value: < 3.0 Wood Units.

Table II. Characteristics and survival of 2010-2014 vs 2005-2009 postoperative EVC cohorts

Two-tailed Fisher exact test

Birth years 2005-2009 2010-2014 P value OR† 95% CI

Reference O'Connor 201019 Present
Number of patients 9 9 1.0
Common atrium 78% 44% .35
Unbalanced AV canal 22% 22% 1.0
Preoperative gastrostomy 0% 67% .018 35.30 1.5-805.0
Age at surgery (months) 1.3 ± 1.3 50.1 ± 40.2 .009
Mechanical ventilator (days) 49.6 ± 57.1 1.1 ± 2.4 .075
Intensive care (days) 48.6 ± 44.2 16 ± 24 .155
Tracheostomy* 60% 0% .028 0.04 0.001-0.900
Mortality 44% 0%‡ .082 0.06 0.003-1.400

*Among survivors.
†OR expressed as the 2010-2014 cohort relative to the 2005-2009 cohort.
‡Two affected infants died of respiratory complications before surgical intervention.
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patient, who was mechanically ventilated 8 days and hospi-
talized 80 days after a ductus arteriosus stent and pulmonary
artery banding procedure shortly after birth (Figure 3, A). Ex-
cluding this child from analysis, the 8 remaining patients with
EVC were extubated within 6 ± 2 postoperative hours and 7
were discharged within 6 days. There were no postoperative
deaths or serious respiratory complications (Table II). In con-
trast, postoperative mortality and tracheostomy were 44%
(P = .082) and 60% (P = .028), respectively, in children from
the 2005-2009 cohort who underwent CHD repair at an average
age of 1.3 ± 1.3 months (P = .009).

Successful delay of surgery required meticulous longitudi-
nal medical care and intensive nutritional therapy. Six chil-
dren (67%) from the 2010-2014 cohort had gastrostomy tubes
placed preoperatively, typically before 6 months of age, to op-
timize growth and medical management. In most cases, gas-
trostomy was accompanied by Nissen fundoplication to protect
the pulmonary system from gastric refluxate.

Discussion

Cardiopulmonary disease continues to claim the lives of many
young patients with EVC, particularly those who undergo tho-
racotomy for heart repair.19,27 The thoracic dystrophy charac-
teristic of EVC and other SRTDs is associated with reduced
alveolar volume, shallow tachypnea, and downward displace-
ment of the liver (pseudohepatomegaly) (Figure 3). In chil-
dren with comorbid CHD, these signs of reduced pulmonary
reserve portend significant perioperative risk and justify delay
of thoracotomy. Although conceptually simple, this strategy
necessitates percipient medical and nutritional care and must
be balanced against risks of delayed CHD repair (eg, chronic
hypoxemia, failure to thrive, pulmonary vascular disease). Nev-
ertheless, respiratory outcome and postoperative survival mark-
edly improve for patients with EVC in whom corrective surgery
can be delayed, and this principle might extend to any child
who suffers from SRTD and comorbid CHD.

In developing mice, Evc and Evc2 colocalize to cardiac tissue
and multiple cartilaginous structures, including ribs and
vertebrae28 and, in the embryonic mouse heart, are expressed
strongly in atrial septal mesenchyme and the secondary heart
field (eg, outflow tract and dorsal mesenchymal protrusion).28

These structures fuse with atrioventricular cushions to close
the primary atrial foramen and form the atrioventricular mes-
enchymal complex. Not surprisingly, atrioventricular septal
defects, particularly common atrium and atrioventricular canal,
are most frequently observed in EVC.29,30 Inactivating vari-
ants of either Evc or Evc2 abrogate hedgehog signaling within
chondrocytes, osteoblasts, and fibroblasts, connecting EVC and
EVC2 changes in humans to short stature (adult height, 108-
161 cm), acromelic foreshortening, ectodermal dysplasia, genu
valgum, and short ribs, with its attendant consequences for lung
mechanics.2,31

The respiratory rate is inversely proportional to alveolar
volume and their product, alveolar ventilation, determines CO2

elimination under control of the central nervous system. During
the first years of life, patients with EVC had higher blood CO2

and HCO3 levels consistent with compensated underventilation
that sometimes required mechanical support (Figure 3). By age
4 years, the pulmonary system matures sufficiently to elimi-
nate CO2 at a normal respiratory rate. These observations are
consistent with the normal pattern of metabolic expenditure
in humans (corrected for body surface area), which shows a
steep increase during the first few months of life followed by
a steady decline thereafter.32

Reduced alveolar volume secondary to rib hypoplasia is suf-
ficient to explain respiratory insufficiency in young patients
with EVC, but to date no studies have documented lung his-
tology associated with the condition. SHH transcripts are found
throughout developing murine lung epithelium, especially in
distal tips of the terminal buds where alveolar-capillary units
form.23 Three transcription factors (Gli1, Gli2, and Gli3) trans-
duce Shh signals during murine embryogenesis. Gli2-/- mice
have tracheoesophageal stenosis and hypoplastic lungs with ab-
normal alveolar lobulation, and haploinsufficiency or knock-
out of Gli3 on this background results in a more severe lung
phenotype.21 Via its interaction with Foxf1, Shh may also
mediate formation of distal pulmonary vessels to ensure their
proper alignment with developing alveoli.22 These animal data
indicate that loss of EVC or EVC2 function could alter lung
development through downstream effects on SHH signaling.
Our histologic observations, although provisional (n = 1),
neither confirm nor refute this finding. Lung hypoplasia is dif-
ficult to evaluate on biopsy material. Specifically, radial-
alveolar counts are often unreliable as a means of determining
the presence or absence of lung hypoplasia. A more effective
post mortem method for evaluating for lung hypoplasia is that
of lung volumes, which cannot be performed on biopsy
material.

The clinical picture is further complicated by interactions
between the pulmonary and cardiovascular systems. Al-
though EVC heart lesions can be associated with low or high
pulmonary blood flow, the latter type predominate (Table I).
In children, pulmonary overcirculation and elevated pulmo-
nary capillary wedge pressure (eg, as observed in common
atrium and atrioventricular canal defects; Table I) are consis-
tently associated with higher airway resistance,33 reduced lung
compliance and volumes, and pulmonary vascular disease.34

These changes can evolve quickly; we observed acute grade II
hypertensive pulmonary vascular changes in lung tissue within
just 7 days of life, still evident 1 day after bilateral pulmo-
nary artery banding (Figure 3, F).

Table I also underscores the divergence of cardiac pheno-
types among EVC c.IVS13+5G>T homozygotes, most of which
are in the family of atrioventricular septal defects. Despite the
variable heart lesions observed in patients with EVC, our prin-
ciple focus here is on their common respiratory phenotype and
how this evolves over time in ways that affect the response to
thoracotomy. Accordingly, we believe our conclusions can be
generalized to a broad range of operable cardiac lesions in chil-
dren with a number of different SRTDs.20

Whatever specific mechanical and histologic derange-
ments contribute to respiratory vulnerability in EVC, clinical
data indicate that respiratory insufficiency associated with EVC
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and other STRDs improves over time and is not a chronic
feature of these disorders. Thus, as the ribcage and lungs mature,
matching of alveolar volume to pulmonary blood flow must
be sufficient to maintain CO2 excretion at normal respira-
tory rates and also accommodate the increased metabolic
demands of exertion and illness.35 These physiologic changes
take place gradually in patients with EVC between birth and
48 months of age, marking the transition to stable respira-
tory reserve; this principle might apply to any child who suffers
from SRTD and comorbid CHD. ■
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