Patient Centered Research: The Audiology Experience

Robert O’Reilly M.D.

Professor of Otolaryngology and Pediatrics
Jefferson Medical College
Division Chief Pediatric Otolaryngology
Patient Centered Research?

- Who are we?
- What do we do?

- A.I. duPont Hospital for Children
- The Clinic for Special Children: Collaborating to improve children’s lives
Nemours – a children’s health system

- 1936 - Alfred I. duPont
 American industrialist

- 1940 - Opened as 60-bed hospital for children with orthopedic conditions
Nemours/Alfred I. duPont Hospital for Children

- 1985 –200-beds
 - full range of pediatric specialties
- Caring for 250,000 children annually in:
 - Delaware Valley
 - Florida
- 2012 - Nemours Children’s Hospital to open in Orlando
Nemours/Alfred I. duPont Hospital for Children

- Expansion of facilities
 - to open 2014
 - 250 single-bed rooms
 - New, larger ED
 - New PICU
 - 188-space underground parking garage
 - Rooftop helipad
 - Five-story atrium entrance and welcome center
Department of Otolaryngology

Dr. Robert O’Reilly

Audiology Clinic

Dr. Yell Inverso

Auditory Physiology and Psychoacoustics Research Laboratory

Dr. Thierry Morlet
Division of Pediatric Otolaryngology

James Reilly, MD Steven Cook, MD Robert O'Reilly, MD Udayan Shah, MD Richard Schmidt, MD

Patrick Barth, MD Douglas Johnston, MD Heather Nardone, MD Katie Bacik, PA-C Colin Drake, PA-C Erin Field, PA-C

Nemours. Alfred I. duPont Hospital for Children
Audiology Clinic

Yell Inverso, PhD

Liesl Looney, Aud

Thomas Jefferson University Dept. of Otolaryngology

Mindy Rabinowitz, MD PGY-4
Clinical Audiology
Full-Spectrum Pediatric Audiology Services

- 12 Audiologists, 2 Audiology Assistants, 1 Audiology Doctoral Extern & 3 support staff
- Comprehensive Behavioral Hearing Evaluations
 - Visual Reinforcement Audiometry
 - Conditioned Play Audiometry
 - Standard Behavioral Audiometry
- Distortion Product and Transient Evoked Otoacoustic Emission Testing
- Sedated and un-sedated Auditory Brainstem Response Testing (Diagnostic and Newborn Screening)
- Comprehensive Middle Ear Diagnostic Evaluations
Audiologic Specialty Care

- Cochlear Implant Program
- Central Auditory Processing Disorders (CAPD) Program
- Pediatric Amplification and Assistive Listening Devices Program
- Auditory Neuropathy Spectrum Disorders Program
- Pediatric Vestibular Program
Pediatric Vestibular Program

Vestibular Evoked Myogenic Potential (VEMP)
- 500 Hz tone burst (75-95 dB HL air or 66 dB pip bone)
- Tonic SCM contraction = EMG 50-250 microvolts
- 80-100 samples averaged

Rotary Chair Testing (RC)
- 0.01, 0.04, 0.16, 0.64 Hz at max velocity 50 deg/s
- Gain, Phase, Assymetry

Video Nystagmography Test Battery (VNG)
- IR system to record corneal movement
- Saccades, Pursuit, OPK
- Spontaneous, positional, positioning nystagmus
- Air induced binaural, bithermal, calorics
Pediatric Vestibular Program

- **Computerized Dynamic Posturography (CDP)**
 - Limits of stability using 8 standard trials
 - Reaction time, movement velocity, endpoint excursion, max excursion, directional control

- **Gross Motor Development**
 - Peabody Developmental Scale (<4 yrs)
 - Bruininks-Ostresky Test Motor Proficiency

- **Full Gait Analysis**
 - Dynamic balance kinetics and kinematics
 - Position / movement CM walking straight line (60 Hz data collection)
 - Self selected speed for 9 meters
Auditory Physiology and Psychoacoustics Research Laboratory
Thematic

- Development of Efferent Auditory Pathways: Cortical control of the auditory periphery
- Speech processing at the cortical level (Quiet and noise)
- Auditory and Vestibular impairment
 - Otoacoustic Emissions
 - Suppression of Otoacoustic Emissions
 - Evoked Potentials:
 - Auditory Brainstem Responses
 - Middle Latencies
 - Cortical Potentials (Speech/noise)
Specific Studies

- Auditory Processing Disorders and Specific Language Impairment:
 - Efferent function and Hemispheric specialization
- Friedreich Ataxia
 - Auditory, Speech and Vestibular functions
- Rett Syndrome
 - Auditory function
- Late Onset Hearing Loss
- Vestibular Compensation
- Inner Ear Malformation
- Noise Induced Hearing Loss
- Auditory Neuropathy Spectrum Disorder
-
Defining Community Needs
Collaborate to Improve Patient Care

A.I. DuPont Hospital for Children

Nemours. Alfred I. duPont Hospital for Children
“Start With a Healthy Child”

Create a Medical Home
Link Services to Research

Translate Research into Practice
Translate Research into Practice: Otosclerosis
Fixation disturbs transmission of sound waves through middle ear ossicles, resulting in a CHL
Epidemiology

Prevalence

- Caucasians: 0.3-0.4%
- Tunisians: 0.4-0.8%
- Asians/Blacks/Native Americans: ~0%

Age of Onset

- 3rd decade (late teens – 6th decade)

Gender

- Female:Male = 2:1 (Clinical Otosclerosis)

Laterality

- 70–80 % bilateral

References:

Ealy, Smith. 2009
Thys, Van Camp. 2009
Markous, Goudakos. 2009
Csomor, Sziklai, Karosi. 2012
Moumoulidis, Axon, Baguley, 2007
Modes of Inheritance

Otosclerosis

- AR
- AD
- Sex-linked
- Sporadic

Monogenic
Polygenic

Markous, Goudakos. 2009
Saeed, Briggs, Lobo, et.al. 2007
Modes of Inheritance

Otosclerosis

Monogenic

Believed to occur rarely in otosclerosis

Polygenic

Likely a genetically heterogenous disease
Challenges to Genetic Analysis

1. Diagnosis is presumptive
2. Pedigree construction difficult
 - AD family:
 Ideal for linkage
 analysis = 10 meioses
 \(\rightarrow \) diff to find
3. Incomplete penetrance & variable expression

Schrauwen, Van Camp. 2010
Saeed, Briggs, Lobo, et al. 2007
Otosclerosis

- 3 Generations of affected family
- Audiometrics, Op-notes, Genetic analysis
Translate Research into Practice:
SLITRK6
SLITRK6 Family of Proteins control:

- Neurite outgrowth
- Synaptic development

SLITRK6 play role in survival and innervation:

- Auditory System
- Vestib apparatus
- Retina
Mouse model: SLITRK6

Organ of Corti normal

\[\downarrow\text{Cochlear innervation density}\]

- Development:
 - Sensory neurons
 - Spiral & vestibular ganglia die

Affected mice

- \[\downarrow\text{Wave I ABR}\]
- \[\downarrow\text{Auditory startle}\]
- \[\downarrow\text{Vertical VOR gain}\]
- \[\downarrow\text{Locomotor activity}\]
- Mid-Frequency hearing loss
Methods

Patients
- 9 subjects
- Endogamous Amish Community
- Age 0.3-36.8 years (mean: 15.3 ± 13.9)

Genetic Testing
- SNP genotype & mapping
 - GeneChip Mapping 10K Assay Kit
- All Pts homozygous for novel nonsense variant of SLITRK6

Auditory/Vestibular
- Tympanometry
- MEMR
- DPOAE
- ABR
- PTA, SDS, SRT
- VEMP
Results

- VEMPS present in 3 of 4 ears tested

<table>
<thead>
<tr>
<th>Subject ID</th>
<th>Age (years)</th>
<th>MEMR</th>
<th>DPOAE</th>
<th>CM (duration in ms)</th>
<th>Waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>nt</td>
<td>-</td>
<td>+ (2.0) + (2.0)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>5.6</td>
<td>100 dB/4 kHz</td>
<td>-</td>
<td>+ (5.0) + (5.0)</td>
<td>i, ii</td>
</tr>
<tr>
<td>4</td>
<td>6.2</td>
<td>100 dB/4 kHz</td>
<td>-</td>
<td>+ (2.5) + (2.5)</td>
<td>i</td>
</tr>
<tr>
<td>5</td>
<td>11.9</td>
<td>100 dB/4 kHz 100 dB/4 kHz</td>
<td>-</td>
<td>+ (3.0) + (2.0)</td>
<td>i, v*</td>
</tr>
<tr>
<td>6</td>
<td>13.9</td>
<td>-</td>
<td>-</td>
<td>+ (3.0) + (2.5)</td>
<td>i</td>
</tr>
<tr>
<td>7</td>
<td>29.1</td>
<td>-</td>
<td>-</td>
<td>nt</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>32.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>36.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*No latency/intensity shift. Abbreviations: CM, cochlear microphonic; DPOAE, distortion product otoacoustic emission; MEMR, ipsilateral middle ear muscle reflex; nt, not tested; "-", absent response.
Results

Audiologic Testing (Audiogram)

- Hearing level vs. frequency for different age groups (Age 1-6 years, Age 11-14 years, Age 29-37 years)
- Speech reception threshold vs. hearing level

$r_s = 0.81, p=0.0002$
Conclusions

Speech & Language Development

• Speech perception impaired out of proportion to pure tone threshold
• OHC dysfunction & auditory dys-synchrony
 • Youth: Develop speech/language
 • Adult: Good lip reading
• 2 oldest subjects
 • Hearing aid users
 • Limited benefit
• No cochlear implants used
 • Possible benefit?
A homozygous nonsense mutation of SLITRK5 is associated with an autosomal recessive auditory neuropathy

<table>
<thead>
<tr>
<th>Journal:</th>
<th>The Laryngoscope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>Scope-13-0434-R1</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Original Reports</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>04-Apr-2013</td>
</tr>
</tbody>
</table>

Complete List of Authors:
- Mokht, Thierry: duPont Hospital for Children, Auditory Physiology and Psychorehabilitation Research Laboratory
- Kroll, Mindy: Thomas Jefferson University, Otolaryngology - Head and Neck Surgery
- Looney, Les: duPont Hospital for Children, Audiology
- Wagner, Tammy: duPont Hospital for Children, Audiology
- Greenwood, J: duPont Hospital for Children, Audiology
- Sherman, Eric: Franklin and Marshall College, Biology and Biological Foundations of Behavior Program; Swarthmore College, Biology
- Achily, Nathan: Franklin and Marshall College, Biology and Biological Foundations of Behavior Program
- Zhu, Artem: Franklin and Marshall College, Biology and Biological Foundations of Behavior Program
- Yoo, Eun Hee: duPont Hospital for Children, Otolaryngology - Head and Neck Surgery
- O’Keeffe, Robert: duPont Hospital for Children, Otolaryngology - Head and Neck Surgery; Thomas Jefferson University Hospital, Pediatrics
- Stone, Robert: Franklin and Marshall College, Biology and Biological Foundations of Behavior Program
- Pufferberg, Erik: Franklin and Marshall College, Biology and Biological Foundations of Behavior Program; Clinic for Special Children, Worcester, Adams Clinic for Special Children
- Morton, Holley: Franklin and Marshall College, Biology and Biological Foundations of Behavior Program; Clinic for Special Children, Lancaster General Hospital
- Strauss, Kristy: Franklin and Marshall College, Biology and Biological Foundations of Behavior Program; Clinic for Special Children, Lancaster General Hospital

Keywords - Combos:
- Molecular Biology, Central auditory processing < Audiology, Molecular biology
- Audiology, Hearing loss < Pediatric audiology < Pediatrics
Translate Research into Practice:
GM3 Synthase Deficiency
What is the Defect in GM3 Disease?
Where are Gangliosides Found in the Brain?
Where are Gangliosides Found in the Brain?
Seizures
Hearing
Vision
Diet

GM_x

GM_x

Brain
Monitoring

- Otoacoustic Emissions (cochlear amplifier)
- Auditory Brainstem Responses
- Cortical Responses

- We will also check the status of the external ear and middle ear.
- All tests are non invasive!
Translate Research into Practice:
Bowling-Haught Family Waardenberg’s Type SNHL
Translate Research into Practice:
The Difference for One Child
Translate Research into Practice: The Difference for One Child