Bridging the gap between research and education using rare disease research

Robert N. Jinks, Ph.D.
Franklin & Marshall College

Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities

2009-10 – Pierce Lab – Pediatric inherited retinal degeneration
2009-10 – CSC – Pediatric inherited retinal degeneration – exome sequencing

FLVCR1 c.361A>G (N121D) – Retinitis pigmentosa and posterior column ataxia

Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
A few days later…
A few days later...

FLVCR1 c.361A>G (N121D) – Retinitis pigmentosa and posterior column ataxia

HARS c.1361A>C (Y454S) – Usher syndrome 3b

BRAT1 c.638_639insA – Lethal neonatal rigidity and multifocal seizure syndrome

TUBGCP6 c.5458T>G (X1820G) – Mennonite microcephaly with chorioretinopathy

CRADD c.382G>C (G128R) – Non-syndromic intellectual disability

SNIP1 c.1097A>G (E366G) – psychomotor retardation, epilepsy, and craniofacial dysmorphism
Challenges

Rapid pace of disease gene discovery → need for corresponding functional data

Exon capture

Exome sequencing

Gnirke et al. (2009)

Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
Challenges

Rapid pace of disease gene discovery → need for corresponding functional data

Gene Function Studies to Investigate Rare and Undiagnosed Diseases

The content on this web page provides additional information for investigators interested in participating in gene function studies in collaboration with the National Institutes of Health (NIH) Undiagnosed Diseases Program (UDP) (Funding Opportunity Announcement PA-13-076 [grants.nih.gov]). This NIH program is providing administrative supplements to investigate the underlying genetics, biochemistry and physiology of undiagnosed disorders.

In recent years, gene function studies combined with genetic and genomic analysis and metabolic studies have greatly improved diagnoses of these very rare diseases and advanced scientific knowledge of the underlying pathogenesis. A critical step in the process leading to diagnosis and potential treatment of these rare diseases is the investigation of gene function in order to provide the causal link between the genetic defects and patient phenotypes.

Over the last four years, the Intramural Research Program-Undiagnosed Diseases Program (IRP-UDP) has identified more than 15 gene variants and associated diseases of interest as starting points for gene function studies. Over half of the newly diagnosed diseases from the UDP involve neurological dysfunction or developmental delay; the remaining phenotypes span metabolic, skeletal and inflammatory disease among others. The current list of these genes and the diseases of interest to the Undiagnosed Diseases Network (UDN) is provided in the list below.

Gene Function Collaboration Candidate List
December 4, 2012

5x increase by June 1, 2013 to 75 rare, potentially pathogenic alleles

Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
Challenges

Rapid pace of disease gene discovery → need for corresponding functional data

Long-term “teachable moment”…
Challenges

Rapid pace of disease gene discovery ➔ need for corresponding functional data

Long-term “teachable moment”…

Teaching Genomics, Plainly

Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
Approach

Diagnosis through deep phenotyping:
- Thorough description of physiological, anatomical, biochemical, and genetic characteristics of a particular disease.

Disease gene identification:
- Identification of the specific gene mutation that underlies the phenotype. (~25,000 genes; 3 billion base pairs)

Functional studies:
- Determine pathophysiological consequences of disease gene variants at molecular, cellular, systems, and organismal (knock-out/in transgenics) levels.

Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
Approach

Develop treatment strategies:
• Can disease course be altered to improve outcomes using research-grade phenotyping and functional data? E.g. – GM3 synthesis/purification.

Public Health Research & Outreach:
• Develop courses and student-faculty research focused on:
 - production of educational materials for patients, families, and caregivers, and
 - epidemiological surveys of disease burden for novel inherited disorders.

Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
Outcomes

BRAT1 c.638_639insA – Lethal neonatal rigidity and multifocal seizure syndrome (RMFSL)

BRAT1 interacts with *BRCA1* and *ATM* – Inhibits *ATM* phosphatase in DNA damage response.

BRCA1 “chaperones” *BRAT1* to the nucleus (Aglipay et al., 2006).

BRAT1 ins. c.638_639A mutation → reading frame shift for amino acids 214-401, and premature truncation at Leu^{401}.

Mutation likely eliminates the *BRCA1* and *ATM* binding sites in *BRAT1*.

Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
Lethal neonatal rigidity and multifocal seizure syndrome (RMFSL)
OMIM 614498

Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
Loss-of-function mutations in PNKP → microcephaly, early-onset, intractable seizures and developmental delay (Shen et al., 2010; Nat. Genetics 42:245).
Outcomes

Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases

Erik G. Puffenberger¹,², Robert N. Jinks², Carrie Sougnez³, Kristian Cibulskis³, Rebecca A. Willert², Nathan P. Achilly², Ryan P. Cassidy², Christopher J. Fiorentini², Kory F. Heiken², Johnny J. Lawrence², Molly H. Mahoney², Christopher J. Miller², Devika T. Nair², Kristin A. Politi², Kimberly N. Worcester², Roni A. Setton², Rosa DiPiazza², Eric A. Sherman⁴, James T. Eastman⁵, Christopher Francklyn⁶, Susan Robey-Bond⁶, Nicholas L. Rider¹,²,⁷, Stacey Gabriel³, D. Holmes Morton¹,²,⁷, Kevin A. Strauss¹,²,⁷

Abstract

The Clinic for Special Children (CSC) has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain) children. Among the Plain people, we have used single nucleotide polymorphism (SNP) microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb) that contain many genes (mean = 79). For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIPL1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data.

Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
Outcomes

Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases

Erik G. Puffenberger¹,², Robert N. Jinks², Carrie Sougnez³, Kristian Cibulskis³, Rebecca A. Willert², Nathan P. Achilly², Ryan P. Cassidy², Christopher J. Fiorentini², Kory F. Heiken², Johnny J. Lawrence², Molly H. Mahoney², Christopher J. Miller², Devika T. Nair², Kristin A. Politi², Kimberly N. Worcester², Roni A. Setton², Rosa DiPiazza², Eric A. Sherman⁴, James T. Eastman⁵, Christopher Francklyn⁶, Susan Robey-Bond⁶, Nicholas L. Rider¹,²,⁷, Stacey Gabriel³, D. Holmes Morton¹,²,⁷, Kevin A. Strauss¹,²,⁷

Abstract

The Clinic for Special Children (CSC) has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain) children. Among the Plain people, we have used single nucleotide polymorphism (SNP) microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb) that contain many genes (mean = 79). For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data.
Rapid Whole-Genome Sequencing for Genetic Disease Diagnosis in Neonatal Intensive Care Units

Carol Jean Saunders,¹,²,³,⁴,⁵* Neil Andrew Miller,¹,²,⁴* Sarah Elizabeth Soden,¹,²,⁴* Darrell Lee Dinwiddie,¹,²,³,⁴,⁵* Aaron Noll,¹ Noor Abu Alnadi,⁴ Nevene Andraws,³ Melanie LeAnn Patterson,¹,³ Lisa Ann Krivohlavek,¹,³ Joel Fells,⁶ Sean Humphray,⁶ Peter Saffrey,⁶ Zoya Kingsbury,⁶ Jacqueline Claire Weir,⁶ Jason Betley,⁶ Russell James Grocock,⁶ Elliott Harrison Margulies,⁶ Emily Gwendolyn Farrow,¹ Michael Artman,²,⁴ Nicole Pauline Safina,¹,⁴ Joshua Erin Petrikin,²,³ Kevin Peter Hall,⁶ Stephen Francis Kingsmore¹,²,³,⁴,⁵†

Monogenic diseases are frequent causes of neonatal morbidity and mortality, and disease presentations are often undifferentiated at birth. More than 3500 monogenic diseases have been characterized, but clinical testing is available for only some of them and many feature clinical and genetic heterogeneity. Hence, an immense unmet need exists for improved molecular diagnosis in infants. Because disease progression is extremely rapid, albeit heterogeneous, in newborns, molecular diagnoses must occur quickly to be relevant for clinical decision-making. We describe 50-hour differential diagnosis of genetic disorders by whole-genome sequencing (WGS) that features automated bioinformatic analysis and is intended to be a prototype for use in neonatal intensive care units. Retrospective 50-hour WGS identified known molecular diagnoses in two children. Prospective WGS disclosed potential molecular diagnosis of a severe GJB2-related skin disease in one neonate; related lethal neonatal rigidity and multifocal seizure syndrome in another infant; identified BCL9L as a novel, recessive visceral heterotaxy gene (HTX6) in a pedigree; and ruled out known candidate genes in one infant. Sequencing of parents or affected siblings expedited the identification of disease genes in prospective cases. Thus, rapid WGS can potentially broaden and foreshorten differential diagnosis, resulting in fewer empirical treatments and faster progression to genetic and prognostic counseling.
CRADD — caspase-recruitment-domain (CARD) and death domain (DD) adaptor protein

CRADD

c.382G>C; Gly128Arg
recessive non-syndromic mental retardation (Mennonite)

CRADD (*aka* RAIDD) links PIDD (p53-induced protein with death domain) and caspase-2 to form PIDDosome required for caspase-2 activation during apoptosis.

CRADD c.382G>C mutation alters a highly conserved residue (Gly^{128}) within the CRADD death domain. May alter CRADD:PIDD interaction and/or CRADD:RIPK1 interaction at DDs.

Cell 128:533
Functional studies: **CRADD** – caspase-recruitment-domain (CARD) and death domain (DD) adaptor protein

![Image of experimental results]

A
- FLAG-mCradd (wt) + V5-mPIDD FL wt
- V5-mPIDD FL wt

B
- FLAG-mCradd DD wt

C
- FLAG-mCradd DD p.Gly128Arg

Cell lysates: FLAG-mCradd-DD wt, FLAG-mCradd-DD p.Gly128Arg, V5-mPidd-DD wt, Non-transfected

Co-IP: anti-FLAG

<table>
<thead>
<tr>
<th>Sample</th>
<th>Anti-V5</th>
<th>FLAG</th>
<th>V5</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAG-mCradd-DD wt</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FLAG-mCradd-DD p.Gly128Arg</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>V5-mPidd-DD wt</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Collaboration with The Clinic for Special Children
Inherited disorders of the nervous system in Plain Communities
Functional studies: *CRADD* – caspase-recruitment-domain (CARD) and death domain (DD) adaptor protein

Alteration of caspase-2 initiated apoptosis (resulting from disruption of the PIDDosome) during neuronal proliferation may lead to inappropriate neuronal cell death that results in cognitive impairment.
<table>
<thead>
<tr>
<th>Genename</th>
<th>Mutation</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNIP1</td>
<td>c.1097A>G</td>
<td>Psychomotor retardation, epilepsy, and craniofacial dysmorphism</td>
</tr>
<tr>
<td>FLVCR1</td>
<td>c.361A>G</td>
<td>Posterior column ataxia, retinitis pigmentosa</td>
</tr>
<tr>
<td>TUBGCP6</td>
<td>c.5458T>G</td>
<td>Microcephaly with chorioretinopathy</td>
</tr>
<tr>
<td>BRAT1</td>
<td>c.638_639insA</td>
<td>Rigidity and multifocal seizure syndrome, lethal neonatal</td>
</tr>
<tr>
<td>HARS</td>
<td>c.1361A>C</td>
<td>Usher syndrome type IIIB; retinitis pigmentosa and progresive sensorineural hearing loss; fever-induced hallucinations</td>
</tr>
<tr>
<td>CRADD</td>
<td>c.382G>C</td>
<td>recessive non-syndromic mental retardation</td>
</tr>
<tr>
<td>HERC2</td>
<td>c.1781C>T</td>
<td>Autism spectrum disorder, developmental delay</td>
</tr>
<tr>
<td>XXXX</td>
<td>XXXX</td>
<td>recessive non-syndromic mental retardation</td>
</tr>
<tr>
<td>SLITRK6</td>
<td>c.1240C>T</td>
<td>Congenital hearing loss</td>
</tr>
<tr>
<td>XXXX</td>
<td>XXXX</td>
<td>CODAS syndrome</td>
</tr>
<tr>
<td>XXXX</td>
<td>XXXX</td>
<td>Yoder dystonia with chronic kidney disease</td>
</tr>
<tr>
<td>XXXX</td>
<td>XXXX</td>
<td>Mental health</td>
</tr>
<tr>
<td>XXXX</td>
<td>XXXX</td>
<td>Venous thromboembolism (dominant; non-Plain)</td>
</tr>
<tr>
<td>XXXX</td>
<td>XXXX</td>
<td>Syndromic developmental delay</td>
</tr>
</tbody>
</table>
Impact on F&M

Integration of collaboration with Clinic into curriculum and student-faculty research

Jinks, Davis, Roberts, Miller, Rice, Yost, Hess, Fenlon, Brewer, Nadig, Billig

Neuroscience, Biology, Public Health, Biochemistry & Molecular Biology, Chemistry, Anthropology

Research-intensive courses reach over 150 undergraduates annually.

Summer research experiences in translational research and public health for over 20 undergraduate students