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GM3 Synthase 
Deficiency

Founder effect in Amish leads to...

Birth

Normal
Poor Feeding
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3 mo. 1 yr.

Developmental Stagnation

3 yrs. Teens

• Can’t walk, talk, reach, or sit
• Nonpurposeful movements
• Muscular weakness
• Brain atrophy
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Patients

changes described in this study are disease-specific in the context of
severe, early-onset neurological disease and may serve as useful
clues to identifying more patients with ganglioside metabolic
disorders in the future. Interestingly, a recent linkage study iden-
tified a homozygous mutation c.994 G>A in the ST3GAL5 gene
leading to GM3 synthase deficiency in 3 patients with ‘‘Salt and
Pepper syndrome’’ described in an African-American family in
1983 [Saul et al., 1983; Schwartz et al., 2011].The cutaneous changes
described in these patients were very similar with our findings here.
As the color of skin in our patients ismuch lighter, the depigmented
changes are often missed since they are subtle in comparison with
the light-colored skin of the Amish patients. However, the
‘‘nonspecific conduction abnormality’’ found in these African-

American patients was not found in any of the eight patients in
our cohort in whom electrocardiograms were performed (data not
shown).

The mechanism for the development of dyspigmentation
remainsunclear. Theonly cell fromGM3synthasedeficient patients
studied to date has been the fibroblast, which demonstrates almost
complete depletion of cellular gangliosides, suppressed epidermal
growth factor receptor activation, and defective cell proliferation
and migration [Liu et al., 2008]. Interestingly, glucosylceramide
synthase-deficient melanoma cells, which have depletion of down-
stream ganglioside GM3, fail to produce pigment because of the
abnormal intracellular sorting of tyrosinase in the Golgi complex
rather thanmelanosomes [Sprong et al., 2001]. Further studies with

FIG. 1. Cutaneousdyspigmentation in patientswithgangliosideGM3synthasedeficiency. A:multiple freckle-like hyperpigmentedmacules on the right
hand of an 18-year-old female (S-1); (B) multiple freckle-like hyperpigmented macules on both legs of a 12-year-old female (M-1); (C) multiple
depigmented macules with several hyperpigmented macules on the right arm of a 12-year-old female (M-1); (D) large depigmented patches on the
neck of a 25-year-old female (H-1); (E) sharply delineated depigmented patches on the right hand of a 24-year-oldmale (H-2); and (F) the forehead
of a 25-year-old female (H-1) with white hairs and depigmented skin.
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Genetics & Disease Mechanism

Nonsense mutation in GM3 
Synthase (SIAT9) gene 

(694C→T, translating to R232X)

Wild-Type

Carrier

Affected
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Genetics & Disease Mechanism

Nonsense mutation in GM3 
Synthase (SIAT9) gene 

(694C→T, translating to R232X)

GM3 
Synthase

Adapted from Rao FV et. al.. Nature Structural & Molecular Biology. 2009; 16: 1186–1188.

Cannot produce GM3

Cannot produce higher 
gangliosides

Problems in cellular adhesion1, 
cell signaling1, and axon-glial 

interactions2

1-Simpson, Michael A., et. al.. Nature Genetics.  2004; 36(11): 1225–1229.
2-Yamashita, Tadashi, et. al.. PNAS.  2005; 102(8): 2725–2730.
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Genetics & Disease Mechanism

Simpson, Michael A., et. al.. Nature Genetics.  2004; 
36(11): 1225–1229.
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Genetics & Disease Mechanism

a-series gangliosides b-series gangliosides

GM3 Synthase
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GM3

Fatty acid

Sphingosine

GlucoseGalactoseNeu5Ac

pKa 2.2–3.0

Neu5Ac(α2→3)Gal(β1→4)Glc(β1)Cer

10-7 M > CMC > 10-9 M (in aqueous solution)
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Neurodevelopmental milestones and concurrent changes in GSL expression.

Yu R K et al. J. Lipid Res. 2009;50:S440-S445

©2009 by American Society for Biochemistry and Molecular Biology
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Fig. 1. The ganglioside concentration of human frontal cortex ex- 
pressed as/xmol sialic acid per g fresh tissue weight from early fetal 

stage to senescent age. 
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soon after birth (1000 nmol/g), followed by a plateau 
to the age of five years and then a marked decrease with 
aging (Fig. 3). Initially, the concentration of Grab 
dropped during the fetal stage when G DZ a started the 
rapid rise, and then began to increase just after birth 
continuing slowly up to at least 50 years of age (Fig. 4). 
GT1 b was the major ganglioside during the first trimes- 
ter and the first part of the second trimester, but its 
concentration rapidly dropped reaching a minimum level 
around birth, and then increasing to at least 50 years of 
age, similar to Grab (Fig. 5). 

Gangliosides of the lacto series 
The major gangliosides have been characterized and 

det~.inined from their migration on TLC before and 
after sialidase hydrolysis. Gangliosides of the lacto series 
constituted a significant portion of the re@no- and dis- 
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Two Goals

Obtain the 
Drug

1 2

Tool to 
Monitor 

Treatment
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GM3 from Natural 
Sources
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Ganglioside 500 Buttermilk

• 0.56% GM3

• 0.6% GD3

• 34.0% other lipids

• 3.2% moisture

• 56.0% lactose

• 5.0% ash

Moisture

Lactose

Other Lipids

GD3
GM3

Ash

Moisture Lactose
Other Lipids GD3
GM3 Ash
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GM3 from Natural 
Sources

GM3 Made in the Lab
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Human vs. Cow GM3

≠≠
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D-erythro-SphingosineChemical 
Semisynthesis
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D-erythro-SphingosineChemical 
Semisynthesis

van den Berg, R. J. B. H. N. et al. J. Org. Chem., 2004, 69, 5699–5704.
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7-O-acetyl lactose
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7OAc Lac 1-Trichloroacetimidate

Performed on 400 mg scale

Tried NaH instead of DBU (100 mg scale)
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Engineering a cell line to produce 3’-sialyllactose

Journal of Biotechnology 134 (2008) 261–265

Contents lists available at ScienceDirect

Journal of Biotechnology

journa l homepage: www.e lsev ier .com/ locate / jb io tec

Genetic engineering of Escherichia coli for the economical
production of sialylated oligosaccharides

Nicolas Fierfort, Eric Samain ∗
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a b s t r a c t

We have previously described a microbiological process for the conversion of lactose into 3′sialyllactose
and other ganglioside sugars by living Escherichia coli cells expressing the appropriate recombinant gly-
cosyltransferase genes. In this system the activated sialic acid donor (CMP-Neu5Ac) was generated from
exogenous sialic acid, which was transported into the cells by the permease NanT. Since sialic acid is an
expensive compound, a more economical process has now been developed by genetically engineering
E. coli K12 to be capable of generating CMP-Neu5Ac using its own internal metabolism. Mutant strains
devoid of Neu5Ac aldolase and of ManNAc kinase were shown to efficiently produce 3′sialyllactose by
coexpressing the !-2,3-sialyltransferase gene from Neisseria meningitidis with the neuC, neuB and neuA
Campylobacter jejuni genes encoding N-acetylglucosamine-6-phosphate-epimerase, sialic acid synthase
and CMP-Neu5Ac synthetase, respectively. A sialyllactose concentration of 25 g l−1 was obtained in long-
term high cell density culture with a continuous lactose feed. This high concentration and low cost of
fermentation medium should make possible to use sialylated oligosaccharides in new fields such as the
food industry.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

N-Acetylneuraminic acid (Neu5Ac) is frequently found as a ter-
minal sugar in cell surface complex carbohydrates and plays a
major role in many biological processes such as cellular adhesion
and the binding of toxins and viruses (Varki, 1993). In particu-
lar Neu5Ac is a major component of the carbohydrate portion of
gangliosides, which are notably abundant in brain tissues and are
involved in several pathologies (Zhang and Kiechle, 2004). Free sia-
lylated oligosaccharides are found at high concentrations in human
milk and are known to have both anti-infective and immunostim-
ulating properties (Boehm and Stahl, 2007). They are also believed
to increase the brain ganglioside and glycoprotein sialic acid con-
centration and favor the brain maturation of breastfed infants by
serving as an exogenous source of sialic acid (Wang et al., 2003).

Due to their important biological functions, sialylated structures
have attracted considerable interest and many methods have been
developed for the synthesis of sialylated oligosaccharides. Since
chemical synthesis are not practical because of the multiple pro-
tection and deprotection steps involved, great effort has been put

∗ Corresponding author. Tel.: +33 4 7603 7648; fax: +33 4 7654 7203.
E-mail address: eric.samain@cermav.cnrs.fr (E. Samain).

into enzymatic and biotechnological methods. The development of
efficient systems for the enzymatic synthesis of sialylated oligosac-
charides has been possible through the identification of bacterial
sialyltransferase genes which are well expressed in Escherichia coli
and the design of multiple enzymatic systems for the synthesis
of CMP-Neu5Ac (Gilbert et al., 1998). It was later shown that the
cost of synthesis could be significantly reduced by using perme-
abilized (Endo et al., 2000) or living (Priem et al., 2002) whole E.
coli cells. In the latter approach, lactose, which was used as exoge-
nous acceptor, was internalized by the LacY permease and was
sialylated by recombinant glycosyltransferase, using CMP-Neu5Ac,
which was constantly regenerated by the enzymatic machinery of
the living cells. Since the only E. coli strains that naturally pro-
duce CMP-Neu5Ac are pathogenic strains that cannot be used in
biotechnological processes, a pathway for the synthesis of CMP-
Neu5Ac had to be imported into E. coli strain K12 derivatives used
for the production of sialylated oligosaccharides. Taking advantage
of the fact that E. coli is able to catabolize Neu5Ac and possesses a
sialic acid permease, an anabolic pathway for the synthesis of CMP-
NeuAc from exogenous Neu5Ac was engineered by over-expressing
the neuA gene for CMP-Neu5Ac synthase and by disrupting the
NanA aldolase, which catalyzes the conversion of Neu5Ac into
ManNAc and pyruvate. This system was first used for the production
of 3′sialyllactose as illustrated in Fig. 1A and was later extended to
the production of the carbohydrate portion of the gangliosides GM2

0168-1656/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jbiotec.2008.02.010
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Chemoenzymatic 
Semisynthesis: Coupling
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