Highlight: GM3 Synthase Deficiency

Joshua Wesalo '13 Advisor: Ken Hess

Better living through chemistry

Collaborations—The GM3 Team

Tuesday, July 23, 13

What is GM3?

Synthetic Strategy

3

Results so far

Future Directions

GM3 Synthase Deficiency

Founder effect in Amish leads to...

Patients

1 in 100 are carriers

Yu R K et al. J. Lipid Res. 2009;50:S440-S445

 $\ensuremath{\mathbb{C}}\xspace{2009}$ by American Society for Biochemistry and Molecular Biology

Svennerholm, L.; Boström, K.; Fredman, P.; Månsson, J. E.; Rosengren, B.; Rynmark, B. M. Biochimica et Biophysica Acta, 1005 (1989): 109–117.

Svennerholm, L.; Boström, K.; Fredman, P.; Månsson, J. E.; Rosengren, B.; Rynmark, B. M. Biochimica et Biophysica Acta, 1005 (1989): 109–117.

Svennerholm, L.; Boström, K.; Fredman, P.; Månsson, J. E.; Rosengren, B.; Rynmark, B. M. Biochimica et Biophysica Acta, 1005 (1989): 109–117.

Two Goals

Obtain the Drug

Tool to Monitor Treatment

2

anglioside 500 Buttermil

- 0.56% GM3
- 0.6% GD3
- 34.0% other lipids
- 3.2% moisture
- 56.0% lactose5.0% ash

Co cos

Difficulty

GM3 from Natural Sources

3

 \neq

GM3 Made in the Lab

GM3 from Natural Sources

Human vs. Cow GM3

What happens after

of

Plasma Glycosphingolipid Levels

Non Amish Cont.

Amish Cont.

Amish Carrier

Amish Affected

26

What is GM3?

The Plan: Synthetic Strategy

Future Directions

Synthetic Strategies

600-02461516 [RF] © www.visualphotos.com

van den Berg, R. J. B. H. N. et al. J. Org. Chem., **2004**, 69, 5699–5704.

van den Berg, R. J. B. H. N. et al. J. Org. Chem., 2004, 69, 5699–5704.

Chemical Activating Sugar Semisynthesis

Chemical Ceramide Preparation Semisynthesis

Duclos R. I., Jr. *Carbohydr. Res.* **2000**, 328, 489–507. Rai, A. N.; Basu, A. *Org. Lett.* **2004**, 6, 2861–2863.

Duclos R. I., Jr. Carbohydr. Res. **2000**, 328, 489–507.

What is GM3?

Synthetic Strategy

Results so far

Future Directions

Model Coupling

5.63 g

10.67 g 95.52% Yield

Duclos R. I., Jr. *Carbohydr.* Res. **2000**, 328, 489–507. Kaya, E.; Sonmez, F.; Kucukislamoglu, M.; Nebioglu, M. *Chem. Pap.* **2012**, 66, 312–315. Khan, R. et al. *Aust. J. Chem.* **1996**, 49, 293–298.

70Ac Lac I-Trichloroacetimidate

Performed on 400 mg scale

Tried NaH instead of DBU (100 mg scale)

Duclos R. I., Jr. *Carbohydr.* Res. **2000**, 328, 489–507. Schmidt, R. R.; Michel, J. *Angew. Chem. Int. Ed. Engl.* **1980**, *19*, 731–732.

Performed on 300 mg scale

One-pot event after trichloroacetimidate formation

MS provides evidence of successful coupling

What is GM3?

Synthetic Strategy

Results so far

Future Directions

Finish Synthesis!

Make the Sugar Here!

Engineering a cell line to produce 3'-sialyllactose

Journal of Biotechnology 134 (2008) 261-265

Contents lists available at ScienceDirect

Journal of Biotechnology

journal homepage: www.elsevier.com/locate/jbiotec

Genetic engineering of *Escherichia coli* for the economical production of sialylated oligosaccharides

Nicolas Fierfort, Eric Samain*

Centre de Recherches sur les Macromolécules Végétales (CERMAV – CNRS), affiliated with Joseph Fourier University and member of the ICMG (Institut de Chimie Moléculaire de Grenoble), BP 53, 38041 Grenoble Cedex 9, France

I. Establish Safety

2. Proof of Principal Make ~I-2 g Use mouse model

Acknowledgements

- Dr. Hess
- Dr.Van Arman
- Dr. Brewer
- Dr. Fenlon
- Dr. Piro

Funding •F&M Chemistry Department Hackman Scholars Fund • Dr. Eric Rackow •HHMI •Eyler Grant **Collaborators** •Dr. Rob Jinks Jon Salandra •Dr. Kevin Strauss •Dr. D. Holmes Morton •Dr. Stephen Roth •Dr. Matthew Kremer •Dr.Theresa Swenson •Adam Heaps •Dr. Stephen G. Withers •Dr. Shawn DeFrees Special Thanks to Lisa Mertzman and to Carol Strausser

Synthetic Strategies

600-02461516 [RF] © www.visualphotos.com

Chemoenzymatic Semisynthesis

Ng, E. S. P. Master's Thesis. U. British Columbia **2005**. Rich, J. R.; Withers, S. G. Angew. Chem. Int. Ed. **2012**, *51*, 8640–8643.

Ng, E. S. P. Master's Thesis. U. British Columbia **2005**. Rich, J. R.; Withers, S. G. Angew. Chem. Int. Ed. **2012**, *51*, 8640–8643.

